CONSIDERATIONS ON THE FEEDBACK THEORY

B. PELLEGRINI )

A genevalization of the elementary feebdack theovy, which
makes it applicable fo any Eype of nelwork, is proposed.
Such an extention is based on a proper civeuit decompo-
sition, that is on cwliing the network and on compensaling
the cut with an impedance and a generaloy such that the
network curvents and voltages ave not changed. Then the
analysis is made divectly on ihis equivalent open-loop
otvcuit by means of the novial theoviss.of the four-ferminal
networks and of the fransfer functions. Most vesults of the
Bode general feebdack theovy ave so veached tn & wnew,
exact and infuitive way, '

1. — INTRODUCTION.

As well known feedback theory is a fundamental tool
of analysis, synthesis and design of the systems and,
in particular, of the linear clectronic networks. The
feedback may be purposefully introduced in a system
in order to reach some important properties and pur-
poses such as the reduction of the system sensitivity
to changes of its parameters, the simplification of the
synthesis of a given transfer function, the control of
the input and output impedances, the control of the
stability, or instability, of the system and so on.

There are two ways to approach and devolop the feed-
back theory, one clementary and one general. The
elementary theory expresses the quantities relative to
a feedback netwotk, such as the loop gain, the return
difference, the sensitivity and the over-all system gain,
by means of the transfer functions 4 and f§ of the for-
ward and backward circunits, respectively, in the case
that these are «scparate» and 4 and § may be calcu-
lated «independently» of ome another. When such
¢ separation» does not exist and ambiguities arise in
the 4 and f evaluation and also when the leakage tra-
smission from imput to output cannot be neglected, one
must leave the intuitive elementary theory and use the
- general one,

The general feedback theory, all its most important
theorems are due to H. W, Bode [1] who analyses the
network as a whole, without distinction between for-
ward and backward circuits, in terms of nodal equations
and of the corresponding determinants, But in this
way most of the intuitive concepts of the elementary
theory are lost.

Such important intuitive features have been then
newly introduced in the general theory and the Bode
theorems are rederived in a much simpler way [2, 3, 4]
by means of the signal-flow diagrams originated by
5. J. Mason [4]. In particular S. Barabaschi and E.
Gatti [3, 2}, by using both a generalised nodal analysis
and the signal-flow diagrams, have shown that the
quantities of the Bode general feedback theory, i.e. the

(*) B. PELLEGRINI - Centrc di studio per 1 Metodi e i Dispositivi
di Radiotrasmissione del ¢N,R., Dipartimento Sperimentale di
Elettrotecnica ed Elettronica,, via Diotisalvi, 2 - Pisa:

loop gain, the return difference and so on, relative for
instance to a given active element, may be expressed
by means of transfer funttions, evaluated when the
active element itself is « properly made passive» ana-
logous to ones of the elementary theory.

In this paper, by developing such a point of view,
it is shown that the elementary feedback theory may
be exentended and made general, like the Bode theory,
without losing its intuitive meaning. This result is
achieved by means of a proper circuit decomposition,
i.e. by cutting the network and by applying to the cut
so obtained an impedance and a signal generator in
such a way that the new network is equivalent to the
original one. Then the analysis is easily made on this
new open-loop circuit — which has all its elements, active
and passive, «living» — by means of the normal theories
of the four-terminal networks and of the transfer func-
tions. In this way a general method and exact defini-
tions, which allow ome to use the elementary feedback
theory in all cases, for any type of network, are given,
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Fig. 1. — a} A given linear active network; 5} is equivalent cir-
cuit after cufiing the connection gg¢".

2. — FEEDBACK THEORY AS A GENERAL NETWORK ANA- ,
LYSIS TOOL.

a) Network Decomposition. -

In a given linear network (fig. 1«) let A, e, %, 1w,
g=g¢ and ¢ =¢" be six arbitrary nodes. Let the first
purpose of the network analysis be the determination
of the transfer function between the ports ¢ % and # w.

For this one of the two connections g ¢" and #¢, for
instance gg¢’, is broken (the separation 1, .., I and
! 4 1, ..., # of the # branches which arrive in the node
g = ¢ of fig. 1a is arbitrary), an arbitrary impedance
Zp is put between ¢ and ¢ and abitrary independent
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ideal voltage sources ¥V, and ¥; are put between q
and # and between ¢ and }, respectively, as indicated
in fig. 15, (Vp and ¥, are the only independent external
signal sources. of the network. Of course one may put
Vp between ¢ and ¢ and Z, between ¢” and £},

With reference to the « open-loop » network of fig. 15
one defines the following transfer functions and impe-
dances of its various four-terminal networks:

Va Vs
(1) A = B = ,
Va V,=0 Vu Vy=o0
1V
Z" = e—— == = M
Gy Ip Ws=0
Vu Vr
(2) y= y W= »
Vs Vp=2o Vs Vp=0
Ip
e = ,
Vs Vp=1o0

which are functions of Zp. -

The voltages V' and V, and the currents I; and I, due
to the two voltage sources Vyp and ¥V, acting simulta-
neously, in virtue of the system linearity and of the
inpedendence of ¥V, and ¥, between themselves, which
make applicable the superimposition theorem, may be
expressed by means of the fransfer functions and of
the impedances defined by (I) and (2} in the form:

(3} Ve=Zply=aVs+ A48V,
4} Ve=9Vs+4+ dVyp,
(5) Ip=pVs4+ G Vp,

Now it is possible to prove that the network of fig. 1 a4
(with the generator V, put between ¢ and %) and the
" one of fig. 15 are quivalent when the arbitrary impedance
Zp and voltage source Vp are chosen in such a way as
to make simultaneously: '

(6) - Vr= Vp, ‘
(7 Ir =1Ip,

that is, for (3) and (5), when ¥V, and Zp= 1/G; have,
respectively, the values given by the equations:

8 v ¢ ¥V

® *Thilap
24

(9) Gp=Gi+-—(1-—p4),
> |

which hold if 1 —f A4 and « are not zero, In fact the
nodal equations of the nodes of the two networks of
fig. 1 which are distinct from ¢ =', ¢ and ¢', for (8),
are identical just as, for (7) and (6}, the equation of
the node ¢ =¢' is the same for the two cases. At the
same time if, from the two nodal equations relative
to the nodes g and ¢’ of fig. 1 b, one eliminates Ip = Iy,
for (B), one obtains an equation equal to the nodal one
concerning the node ¢ = ¢ of fig. 1a. Therefore, the

(1)

equation systems of the two networks being identical,
for the uniqueness of the solution of a linear algebrical
equation system the voltages are equal in the two
networks.

In order to dete1m1ne the impedance Z, = 1/Gp one
must solve the eq. (9) in which all the quantities are
functions of Z, itself. Such a problem is remarkably
simplifiecd when g == 0 that is when the four-terminal
network ¢"#, e b is unidirectional. In this case Zp be-
comes equal to the iterative impedance Z; of the four-
terminal network ¢’ ¢, g#; in its tumn Z; resuits inde-
pendent from Z, when also the network ¢" #, ¢ ¢ is
unidirectional.

b) Ouer-All System Gain.

" In virtue of the equivalance, proved in the preceding
section, between the networks of fig. 1 one may deduce
the properties of the original network of fig. 1 & from
the -analysis of the «open-loop » one of fig. 1 4.

Tn particular from (8) and (4) {which holds for any
value of V, and Z;) the over-all system gain A;=
= Vu/V, from imput to ountput becomes:

a A :
(19) Af=——+ v,
184

that is, as in the clementary feedback theory, the transfer
gain A; is expressed by means of the transfer functions 4
and 8 of the forward and backward circuits, respectively,
and by means of the leakage-transmission term y_and
of the tramsfer function « between the ports eh and
gt (fig. 1h).

In the present analysis the feedback is referred to a
given pair of nodes ¢ = ¢’ and # =¢" in the sense that
the feedback exists with respect to them if the voltage
Vr = Vy may be expressed as a linear combination of
the imput and output voltages ¥, and Vy, respectively,
that is if, simultaneously, «=%~0 and =4 0.

Instead in the theory of Bode [I] and of the other
authors [2, 3, 5] the feedback is considered around an
element and its value, for instance the transconductance
gm of an active element, is put in explicit evidence in
the various quantities, as in the return ratio ot loop
gain fA. :

Also in the present method one may do the same thing.
Tn fact if the nodes ¢ =¢’ and ¢ =¢ are selected in )
such & way that the voltage V; — V, bebween them is
the voltage on which the generator g, Vp of the active
element depends and the branches I + 1, ..., » (fig. 1 a)
are all on the g side, it is g = 0, Zp = Zi = o0 and:

A = gmAl 3

where A, is the value glven by the first of- (1} for gm =
=1 AfV..

When =% 0 one.can put o = y f* where f* = (V,/
Vu)|Vp=u- If g% = f, (10) becomes:

d

(12) —
184

Ar =

One may have f* = § for instance when the generator
¥, which can represent an external signal, the initial
conditions in the complex frequency domain, a distur-
bing signal and so on, has the terminals ¢ and % on’
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the forward line (assumed distinet from the backward

one) between the output port # w and the reference
one g" . ;

c) Sensitivity and Relurn Difference.

In the preceding section the return ratio or loop gain
8 4, the return difference Fg — 1— g 4 and the over-
all transmittance 4y of the network of fig. 1 @ have been
expressed, with respect to the control node ¢ = g and
to the reference one ¢ == ¢/, directly by means of the tran-
sfer functions 4, «, § and y of the four-terminal net-
works of the open-loop circuit of fig. 15 as'in the ele-
mentary theory, without using the signal-flow diagrams
and/or the nodal equation systems and the relative de-
terminants.

Now, by following Mason's definition [4, 5] of sensi-
tivity $47y. of the over-all trasmittance Ay with respect
to a given parameter W, one has:

W dAy
‘SAfW =
Ay aW

(18)

E}

where W may be equal to 4, B, « an y or, for (I11), to
Em- o

From (13) and (10} one obtains the relationships bet-
ween' S4f,,, Fg and the other parameters, deduced by
Bode [1] (who defines as sensitivity 1/54/y} and Mason
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Fig. 2. — a) Colncidence of the nodes ¢ and g in the evaluation

of the impedance between the nodes ¢ and ; &) its Thévenin
equivalent circuit,

L
(4, 5]. In particular when the leakege transmittance y
is zero S4f, = S4f,, = 1/Fq, whereas, for [pda|>1,
§47g =1 as in the elementary theory.

d) Immpedances.

The equivalence between the circuits of fig. 1 allows
one to calculate in a general and simple way the im-
pedance seen looking into the network through the
arbitrary pair of nodes ¢ and % (e and & may be also
the terminals of a branch broken, just in order to cal-
culate the impedance seen looking into the circuit th-
rough them).

For this purpose in fig. 1 one chooses g coinciding
with 2 as indicated in fig. 2 & where moreover all the
branches distinct from- that relative to the external
generator ¥, are brought in ¢".

From fig. 2 the impedance Z betweon e¢ and A is
given by Z = V,/I; and, for (3), (6) and (B), it be-
comes: . '

(1—p4)

(14) z =z ,

o

By applying the Thévenin theorem to the network
of fig. 2 @, between /i and T, ons obtains the equivalent
circuit of fig. 2 & from which and from the second de-
finition (2) it results w = Zp/(Zp + Zp) so that Z be-
COMES:
{15) Z=(1—pd)(Zp+ Zy) .

From fig. 25, in which (4 §|z,~0) = (Vr’
{V3) |ya=.,,ng o is the loop gain for Zp = o0, and
from the A and § definitions given by (1} it is also:

(18) Z=Zy+Zp(1 —A4 Blzy= ).

In particular the eq. {14} or (15) or (IG}Imay be used
to calculate both the imput and output jmpedances of
a given system. :
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Fig. 3. — a) Dual case of the one of fig. 15; b) coincidences eTE
=g and k=¢=¢ in the calculation of the admittance between
the nodes e end h; - ¢} corresponding Norton equivalent circuit.

e) Dual Case.

The preceding analysis can be made by using an
ideal current source I, in place of the voltage cne Vyp
and by modifying properly the definitions (1} and (2).

In particular if the interest is in determining the
current gain A’y = IufI; that is the ratio between the
current I, whick passes through the impedance Z.
put between # and w and the current I, due to the ex-
ternal generator, one may use the circuit configuration

"of fig, 3 & which is dual to the one of fig..1 b. The analysis

is completely dual to the preceding ome, ie. in the
various equations each voltage and the impedance must
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be replaced by the corresponding current and admittance,
respectively, and viceversa.

The admittance ¥ between the nodes ¢ and  may
be obtained from the dual equations of (14), {15) and
{16) by making the nodes ¢ and ¢ =2" coincide with
¢ and h, respectively, as.indicated in fig. 3% and 3¢
where ¥, is the Norton eguivalent admittance of the
network external to Y7, and I,. In this case 4’ §’ |y-’ =
is the loop gain (I'+/1y) |7, = o, vty — w0 f0r Z'p = /¥y, =
= 0. In particular, by rewriting (18}, it results:

(17)

Y — Y'b + Y.rp (1 __Ar ﬁr iy'pz m}

¥ig, 4. — Three-terminal networks, and their a.c. equivalent cir-

cuits, which may be ingerted among the nodes ¢, ¢’ and =

{after the cutting of the conuection g¢’) of the circuit of fig. Ia
without changing its voltages.

It may be useful to note that, for the equivalence
between the network of ﬁg 3 ¢ and the uncut orlgmai
one, in the latter one may introduce, among g, ¢" and
! =t', the three-terminal network of fig. 4 a obtaining
in this way a new equivalent network. In an analogous
way one may introduce the circuit of fib. 45 in the
network of fig. 1 without changing its currents and
voltages. .

Fig. 5. — a) Common coflector (= C} or comton emitter (w= E)

amyplifier; b) its a.c. equivalent circuit. Reference node ¢= ¢ put

" in u and control node ¢= ¢’ made coincide with B and with D
in the cases ¢) and d), respectively.

3. — EXAMPLES.

Tn order to illustrate with an example the précediﬂg '

theory one considers the network of fig. 5 @ whose a.c.
equivalent circuit, in terms of hybrid parameters #, is

indicated in fig. 55, With the input and output ports
in e/ and % w, respectively, it is a common collecotr
(CCA) or common emitter (CEA) amplifier when the
node w coincieds with the collector C or the emitter E,
respectively, of the fransitor.

- If the nodes y =¢ =B and { =t = u are chosen
as control and reference nodes, respectively, the con-
figuration of fig. 5¢ is obtained. With such reference
nodes one obtains somewhat elaborate expressions for
the various quantities. In fact from (1) and (2) and .
from fig. 5 ¢ one has:

— by Zi (Zs o+ ZalA . B = — ZullZs + Z)
Gi = (Zs + Z1 + Zp)l A,
y=Zihjd , « =2, (Ri—he ke Z0){A , p = he ZifA;

being:
4 =M~ (ZB —|- zZ + Zp) —hehe 2 (ZS 4 Zp) .

From (9} Zp becomes:

(18) . . .
(ha — ke e Z3) [Be -+ Zu (Bp—Tir — B BT — liy e 222

ZP_ ¥

b + B (L—pn) 21

which, in the CEA, being [6] Aiec = Rre; Aro = 1, hpe =

— (1 + kyo) and fioe = hoe, gives Zpe = hie + Bge Zy
and in the CCA, with ji;. ~ 0, Zpe = lse. By substita-
ting the quantities so deduced in the relationships of the
preceding analysis one obtains. the normal expressions
of the gain, of the impedances and so on, which are
derived in a more direct way by means of the usual
methods. The present analysis serves only to remark
that also a common emitter amplifier is a feedback net-
work when the collector is considered as reference node
¢ = ¢’ and the base as control node g = g’, that is when
the base-collector port is considered as imput port of
the «intrinsic» amplifier, #

The analysis is remarkably simplified i one chooses
as control node g = ¢ to cut, as indicated in fig. 54,
the point D of fig. 5% In fact in this case ¢ = 0 and
7y = hy, so that, from (9), it is directly Zp* = k. In
consequence, from (1} and (2}, it #s 4 =k Zt (M +
+ Z)the A), B'= — ke (L~ R} + 29,y = Zif A’
and o = /A’ being A" = Z, + ks + (1 — k) Z3. From
such expressions of the transfer functions and from {10)
the over-all voltage gain becomes A5 = Z; (1 + &)/
The + 25 + Z1 (1 — By (1 4+ &7)] from which one ob-

" tains the normal results for the CC and CE amplifiers.

Finally, being A 8 |7+, = oo = — s (1 — hr) Zyfhs and
Zy = Zs + Z1 (1 — k), from (18) the imput impedance
becomes Z = Zs + B + (1 — B {1l + ky) Z;. That
is all the guaniities of the CC and CE amplifiers can
be obtained with a single method by means of the ge-
neralised elementary feedback theory.

When the backward circuit is distinct from the for-
ward one the control node ¢ = ¢ to cut and the re-
ference one § = ¢’ are to be chosen along the closed loop
in such a way as to simplify the calculattous and, in
particular, to make g = 0.

4. — CONCLUSIONS.

It has been shown that a «control» node of a net-
work, arbitraryly chosen, may be cut without changing
the voltages and currents if among the new terminals
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so obtained and a « reference » node, also selected in an
arbitrary way, a proper impedance and a proper gene-
rator are put,

From the direct analysas, made by means of the
normal four-terminal networks and transfer function

theories, of such a decomposed open-loop circuit (e-

guivalent to the original one) a general feedback theory,
which keeps the intuitive meaning of the elementary
one and at the same time may be applied to any type
of network, has been obtained.

In particular in this way exact rules have been given
to calculate the various quantities such as the loop
gain, the sensitivity, the leakage transmittance, the
over-hall system gain, the impedances and so on of an
amplifier in which the feebdack is purposefully intro-
duced and which is built by means of active elements,
such as bipolar junction transistors, characterised by a
low imput impedance and by a non negligible intrinsic
feedback, .

In conclusion the proposed decomposition theorem
allows one to use in general the elementary feedback
theory without losing its important intuitive meaning.

The author wishes to thank prof. E. Gatti for his
helpful suggestions on the argument of this paper.

The paper was first received on the 17th July 1972,
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